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Scientific Report
The steady rise of machine learning techniques, combined with the availability of
affordable sensor arrays, has had a transformative impact in a large number of
scientific fields. With the dramatic increase in data accessibility and computational
power, traditional model-based approaches in engineering are giving way to a
data-enhanced paradigm. Prediction and control of turbulent flows, a challenging
area of engineering sciences, are no exception in this respect. Despite early
attempts, the successful control of such complex systems by machine learning
techniques raises specific issues such as weak observability or an exhaustive
range of temporal and spatial scales. Moreover, the effective incorporation of
knowledge about the physical system, such as symmetries, invariances or
conservation laws, into the learning process is far from trivial.

Nonetheless, recent success of machine learning techniques in the prediction of
chaotic dynamical systems and control of highly nonlinear flows has fueled a great
many research efforts and has shown that progress in this field critically relies on
an interdisciplinary skill set, ranging from applied mathematics and machine
learning to physics, from computer science to experimental methods. The aim of
the proposed workshop was to bring together control practitioners, fluid
dynamicists and machine learning experts to critically review recent developments
in the field and identify both opportunities and challenges in using machine
learning techniques for high-dimensional physical systems. The workshop was
meant to act as a forum for exchanging ideas and as an occasion to learn and
discuss.

Altogether there were 77 participants from 12 countries and 34 presentations,
including 6 keynotes. The list of participants and the full programme are available
in a separate document. Most importantly, there was ample time for informal
discussions among the participants during coffee breaks and lunches.

Specific topics addressed in the talks and discussed included:

• Data-driven modeling
Describing the behavior of a physical system, in order to predict its future state, or
an associated quantity of interest, is of crucial importance in many situations. For
instance, it is a building block for most applications in engineering. However, a
reliable model describing the system at hand is not always available and data-
based techniques have received a lot of attention recently. At the workshop,
several efforts along this line have been discussed. The importance of relying on
the right predictive variables, or features, to obtain an accurate, and most
importantly, generalizable model was underlined and guidelines were provided.
Also discussed is the role of past observations in obtaining good predictive
capability models. An effort was discussed relying on the Mori-Zwanzig formalism
to estimate the influence of unobserved variables onto measurement data in a
principled way.
In a similar effort toward principled learning, prior expertise on the system can be
included in the data-learning process, to improve the convergence rate of the
learning algorithm and provide some bounds in its resulting behavior. For instance,
penalization of the deviation from the solution of a Navier-Stokes solution can be
considered for a model trained to reproduce flow fields. This Physics-informed
machine learning approach is currently attracting a lot of efforts.



A faster and better learning can also be obtained by first providing empirical
functions to train a neural network, prior to refining the training with actual data from
the system. This transfer learning approach allows to save on the amount of data
required for training and is an important ingredient in the common situation where
data are scarce.
Also presented were criteria to assess the quality of the new data in the sense of
estimating whether they were redundant with an already seen dataset or not. This
is particularly subtle in multiscale systems where what may appear as
extrapolation in a traditional sense may not be the case due to scale invariance
with turbulence. In response, a novel data scaling method for incompressible
turbulent flows through sparse regression analysis that reveals the likeliness of
data to have been "seen" was discussed. In case observational data come from
images, such as in oceanography for instance, a number of factors may affect the
quality, such as clouds preventing a good view of the sea surface from satelites. To
approximate the state of the system, generative models can be trained and learn to
mimic and explore the low-dimensinal manifold the data of interest often lie on.
Several efforts along these lines were presented at the workshop, for instance
predicting a three-dimensional turbulent field from corrupted field measurements.
While many presented approaches were involving neural networks as an
approximation model, several alternative choices were also discussed. For
instance, genetic programming, where a model is learned by combining
elementary functions and laws, was shown to be successful in learning behavior
laws such as drag correlation functions or control policies.
Further, data-modeling can be part of a simulation workflow, where a
computational model is making use of a data-based module for some critical part.
An example was provided in the form of a data-accelerated Poisson solver using a
convolutional neural network (CNN) coupled with a Navier-Stokes simulation
code.

• Dimensionality reduced models
A widespread assumption in machine learning for systems as complex as
turbulence flows as considered in this workshop is that the state of the system, or
the quantity of interest, is of dimension much lower than the ambient dimension of
the accessible variables. This situation can be exploited and a wide range of
presentations at the workshop were explicitly relying on a reduced-order
representation of the configuration at hand. For instance, an unsupervised
technique such as Proper Orthogonal Decomposition (POD, also termed Principal
Component Analysis in other scientific communities) can be used to learn a low-
dimensional basis, complemented with a data assimilation technique to estimate
the associated time-dependent coefficients of the basis elements. This
combination of POD and (ensemble) Kalman filter was shown to provide good
performance in predicting the future state of a turbulent flow. An alternative is to
use an end-to-end learning of the low-dimensional manifold via auto-encoders.
Several efforts in this direction were reported.
A somehow different approach is to learn a generative model using Latent Dirichlet
Allocation (LDA). This technique learns a probabilistic approximation of the
training data via a random combination of learned topics, which can be formulated
as spatial fields in the fluid mechanics domain. Two efforts relying on LDA were
discussed, with application in climate modeling and turbulent flow field
reconstruction.
The popular Dynamic Mode Decomposition method (DMD) was also discussed
and this tool was used for flow analysis by several authors. This formulation was
extended to observables in terms of kernels and has shown good accuracy and
stability properties as illustrated with the prediction of geophysical flows.
Dimensionality reduction can also be achieved through a clustering technique, so
as to coarse-grain a dataset in a few representative instances. This representation



can then be used for analyzing the flow dynamics or for control purposes.
In contrast with projection-based approaches where a high-dimensional quantity is
projected onto a low-dimensional approximation space, an alternative spectral
submanifold (SSM) method was presented, relying on a restriction onto smooth
invariant manifolds arising from nonlinear continuation of spectral subspaces.

• Closure modeling
Of particular interest for the scientific community involved in turbulent flows is
turbulence modeling. Owing to the wide range of scales involved in a turbulent
flow, simulation codes cannot resolve each degree of freedom in a computationally
tractable manner and one has to rely on modeling to alleviate the simulation
burden. In particular, very small scales are commonly seen as rather independent
from boundary conditions and geometry, and hence constitute a good candidate for
a closure model with a wide range of validity. While standard closure models were
derived from first principles, data-driven models now emerge as a potential
alternative. Several efforts towards this direction were reported during the
workshop. A popular approach is to recalibrate legacy closure models with highly
resolved data from experiment or Direct Numerical Simulation. Examples were
given using the popular Spalart-Allmaras RANS model, the Reynolds Stress
Model or PDF model, using supervised learning, reinforcement learning or a
generative approach. One can also identify different regimes of turbulent flows, and
their machine-learned specific closure models, in conjunction with a classifier. It
results in region-specific closure models, potentially improving upon a global
model used across the entire numerical domain. Also discussed was a field
inversion approach where the correction to the resolved variables is learned so as
to lead to the correct prediction of turbulent quantities.
Another typical closure model used in turbulent flow simulation is near a wall
where stronger gradients typically call for a high mesh resolution, hence a high
numerical cost. To circumvent this challenge, wall functions can be employed to
locally model the behavior of the flow without resorting to a very large number of
degrees of freedom. Illustrations of this line of research were given with data-driven
learning of wall functions for Large Eddy Simulation (LES) and roughness
functions with deep neural networks.

• Data-driven control
Beyond the modeling and discovery of governing equations, as mentioned above,
many situations of practical interest involve some action onto the system under
consideration, with the goal of achieving a given objective. Prototypical of this
situation is the maximization of the lift-to-drag ratio in aerodynamics via a set of
actuators affecting the flow field. Typical control strategies involve solving the
governing equations, and their adjoint, hence constituting a formidable challenge
for large-dimensional systems to be controlled in real-time. A different approach is
to learn a control policy from experiments, mapping measurements to control
actions. Several talks have reported efforts in this direction, using various methods
for learning and approximating the control policy. Among these, Genetic
Programming has been considered to learn an algebraic expression linking the
sensor information to the action via episode-based experiments for a high
Reynolds number flow around an airfoil, an Ahmed body flow and an open-cavity
configuration.
An alternative method relying on reinforcement learning was also employed for low
dimensional flows. It is not episode-based, hence allowing for a potentially high
learning rate, but still requires algorithmic developments for a wider applicability.

We thank Euromech and the Conservatoire National des Arts et Metiers (CNAM) in
Paris for making the meeting possible and for financial and organizational support.



Number of participants from each country

COUNTRY PARTICIPANTS

United Kingdom 5

France 38

United States 8

Germany 9

Italy 4

Sweden 2

Canada 1

Spain 2

Belgium 2

Switzerland 2

Denmark 1

China 3

TOTAL 77

Please send this report in electronic form to the Secretary General of EUROMECH, within one month

after your Colloquium.
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