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Periodic structures find numerous applications in physics and engineering domains due to their pe-
culiar properties in wave guiding and filtering. A major example in the electromagnetic field is
represented by photonic crystals [1], while their counterparts for acoustic and elastic waves are the
so-called phononic crystals [2]. Focusing on elastic periodic structures, the frequency range of ap-
plications is wide: from extremely high frequencies, i.e. THz region for heat transmission [3], to few
Hz in the seismic metamaterials domain, often taking the most from locally resonant mechanisms
[4, 5, 6]. Among the others, the bandgap (i.e. the frequency range of prevented wave transmission) is
one of the most investigated properties: a wide and complete bandgap is generally beneficial to guar-
antee robust wave attenuation around a certain frequency [2]. In many cases, a complete bandgap
is obtained by a periodic arrangement of two or more materials [2, 7], but significant results can
also be achieved for a single material [8], among which the one endowed with a very large complete
bandgap that the authors show in a previous work [9].
In general, periodic structures endowed with bandgap exhibit attenuation in the transmission spec-
trum of the finite structure in correspondence of the bandgap frequency range [2, 7, 8, 9]. Conversely,
the design presented in this work is such that the transmission spectrum of the finite structure is
typical of a low-pass mechanical filter: the attenuation starts in correspondence of the bandgap bot-
tom limit, and it proceeds beyond the bandgaps top limits, merging the subsequent bandgaps. The
bandgaps merging is confirmed by both numerical calculations and experimental tests on a finite
prototype. Additionally, a comparison with a prototype of a homogeneous solid cube of the same
material, production process and dimensions is carried out to highlight the differences between the
proposed design and the bulk material.

References
[1] Joannopoulos, J., Johnson, S., Winn, J. and Meade, R., “Photonic Crystals: Molding the Flow

of Light”, 2nd Ed. Princeton University Press, (2011).
[2] Laude, V., “Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves”, De

Gruyter, (2015).
[3] Maldovan, M., “Sound and heat revolutions in phononics”, Nature, 503, pages 209, (2013).
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