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Summary. Nonlinear stiffness characteristics appear regularly in engineering applications including in systems with digital feedback.
This paper proposes a novel method for bifurcation analysis of sampled systems with continuous nonlinearities and the presented
approach is used to predict the characteristics of Hopf bifurcations in the digital force control of a mass and nonlinear spring system.

Introduction

In engineering applications, nonlinear stiffness characteristics often appear due to material properties or simply due to
the system geometry. With the widespread use of digital controllers, it is common to encounter dynamical systems
characterized by both digital sampling and continuous nonlinearities [1]. In this paper, force control with a sampled linear
proportional controller of a mass and nonlinear spring system is investigated using the developed novel approach.

Mechanical model and stability

In this section, the mechanical model of force control with nonlinear stiffness is introduced and the linearized stability is
presented [2]. The mechanical model in Fig. 1. represents a manufacturing process with prescribed contact force.

Figure 1: Mechanical model of nonlinear force control, panel a). Stability chart of force control, panel b).

The corresponding nonlinear equation of motion of the controlled body reads

ẍ(t) + ω2
nx(t) + αx3(t) = (1− P )ω2

nx(t− τ(t)). (1)

where ω2
n = k1/m and α = k3/m, while the saw-tooth like time-dependent time-delay τ(t) characterizes the sampling

with sampling time h as shown in Fig. 1. The stability chart in Fig. 1 was identified by considering that the feedback is
constant between sampling instants and it shows that the process experiences Hopf bifurcation along the red boundaries.

Hopf bifurcation analysis

For the bifurcation analysis of dynamical system (1) the concept of history functions is applied, which is usually consid-
ered for delay differential equations. Let us define the history functions

Xj(ϑ) =

[
xj(ϑ)
vj(ϑ)

]
, where xj(ϑ) = x(tj + ϑ), vj(ϑ) = ẋ(tj + ϑ), ϑ ∈ [−h, 0], tj = jh, j = 0, 1, 2 . . . (2)

A nonlinear implicit mapping is created between subsequent history functions based on the equation of motion (1):

Xj+1(ϑ) = ΦI(Xj ,Xj+1, ϑ) + f(Xj+1, ϑ), (3)

where the linear terms are included in the linear operator ΦI , while the nonlinearities appear in the nonlinear operator f :

ΦI(Xj ,Xj+1, ϑ) =

[
xj(0) + vj(0)(h+ ϑ)− ω2

n

∫ ϑ

−h

∫ s

−h
xj+1(r) dr ds+ (1− P )ω2

nxj(−h)( 12ϑ
2 + hϑ+ 1

2h
2)

vj(0)− ω2
n

∫ ϑ

−h
xj+1(s) ds+ (1− P )ω2

nxj(−h)(h+ ϑ)

]
,

f(Xj+1, ϑ) =

[
−α

∫ ϑ

−h

∫ s

−h
x3
j+1(r) dr ds

−α
∫ ϑ

−h
x3
j+1(s) ds

]
. (4)

Equation (4) includes both the nonlinear effects and the sampling delay, however, the implicit terms make it difficult to
handle this form. First, we apply a modal transformation. In order to find the necessary eigenfunctions, in generic cases,
it is possible to formulate an explicit linear operator equivalent to ΦI :

Xj+1(ϑ) = ΦEXj(ϑ), ΦEXj(ϑ) =

[
xj(0)G1(ϑ) + xj(−h)G2(ϑ) + vj(0)G3(ϑ)
xj(0)g1(ϑ) + xj(−h)g2(ϑ) + vj(0)g3(ϑ)

]
. (5)
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The functions Gi(ϑ) and gi(ϑ) are calculated by solving the linearized equation of motion in closed form. The solutions
of the explicit eigenvalue problem µS(ϑ) = ΦES(ϑ) also solve the implicit one µS(ϑ) = ΦI(S, µS, ϑ) and gives the
same three characteristic multipliers µ1,2,3. Now let us define a scalar product over the space of the state functions by

⟨X,Y⟩ =
∫ 0

−h

Y∗(s)X(s) ds, X,Y ∈ R → C2, (6)

which makes the adjoint of the explicit operator ΦE take the form

Φ∗
E

[
y1(ϑ)
y2(ϑ)

]
=

[
δ(ϑ)

∫ 0

−h
G∗

1(s)y1(s) + g∗1(s)y2(s) ds+ δ(ϑ+ h)
∫ 0

−h
G∗

2(s)y1(s) + g∗2(s)y2(s) ds

δ(ϑ)
∫ 0

−h
G∗

3(s)y1(s) + g∗3(s)y2(s) ds

]
. (7)

The adjoint eigenvalue problem µN(ϑ) = Φ∗
EN(ϑ) presents the adjoint eigenfunctions. Scaling these adjoint eigenfunc-

tions Ni such that ⟨Si,Ni⟩ = 1, we can define the modal coordinates

yj = ⟨Xj ,N1⟩, zj = ⟨Xj ,N2⟩, uj = ⟨Xj ,N3⟩, and wj(ϑ) = Xj(ϑ)− yjS1(ϑ)− zjS2(ϑ)− ujS3(ϑ). (8)

Projection of the implicit equation (3) with the adjoint eigenfunctions N1,2,3(ϑ) results inyj+1

zj+1

uj+1

 = B

yj+1

zj+1

uj+1

+A

yjzj
uj

+

⟨ΦI(wj ,wj+1) + f(Xj+1),N1⟩
⟨ΦI(wj ,wj+1) + f(Xj+1),N2⟩
⟨ΦI(wj ,wj+1) + f(Xj+1),N3⟩

 ,

wj+1(ϑ) = ΦI(Xj ,Xj+1, ϑ) + f(Xj+1, ϑ)− yj+1S1(ϑ)− zj+1S2(ϑ)− uj+1S3(ϑ), (9)

which can be rearranged linearly in an explicit way for y, z and u. At a Hopf bifurcation point, we can divide the
function space into the center and stable subspaces. The center subspace is described by y and z with corresponding
critical characteristic multipliers µ1,2 = e±iβ , while u and w(ϑ) are part of the stable subspace. The characteristic
multiplier corresponding to mode u is |µ3| < 1, while µi = 0, i = 4, 5, . . . because w(ϑ) disappears from the linearized
system entirely. According to the center manifold theorem, we may restrict the dynamics to the center manifold [3]. The
approximation of the center manifold must be done up to third degree in wj(ϑ) = W (yj , zj , ϑ) and uj = U(yj , zj).
Finally, by substituting the linearly explicit expression for yj+1 and zj+1 into the nonlinearities, we push the implicit
terms to higher orders, thus, one obtains the explicit third order complex normal form of this Hopf bifurcation:[

yj+1

zj+1

]
=

[
µ1 0
0 µ2

] [
yj
zj

]
+

[
1 0 0
0 1 0

]
(I−B)−1

⟨ΦI(Wj ,Wj+1) + f(µ1yjS1 + µ2zjS2),N1⟩
⟨ΦI(Wj ,Wj+1) + f(µ1yjS1 + µ2zjS2),N2⟩
⟨ΦI(Wj ,Wj+1) + f(µ1yjS1 + µ2zjS2),N3⟩

 . (10)

The Hopf calculations made using normal form (10) are presented in Fig. 2 and compared to numerical simulations of
equation (1). The calculations show good agreement with the numerical simulations.

Figure 2: Bifurcation diagrams of the sampled nonlinear force control problem for ωn = 100 rad/s with progressive stiffness α = 10
rad/sm2 in panel a) and degressive stiffness α = −10 rad/sm2 in panel b).

Conclusions

A model of sampled force control on a single degree-of-freedom oscillator with nonlinear stiffness was investigated.
Using the presented method, both sub- and supercritical Hopf-bifurcations were identified. Both types of bifurcations
appeared for progressive and degressive stiffness characteristics, however, their locations are reversed in the two cases.
The predicted limit-cycle amplitudes also match the ones obtained with numerical simulations.
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