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Control-based continuation of an externally excited MEMS self-oscillator

Seigan Hayashi∗, Stefanie Gutschmidt∗, Rua Murray†, Bernd Krauskopf‡
∗Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
†School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

‡Department of Mathematics, University of Auckland, Auckland, New Zealand

Summary. We apply control-based continuation (CBC) to a periodically forced active micro-cantilever with integrated sensing and
actuation elements. Previous work with an experimental test rig has shown that this micro-electromechanical system (MEMS) is
described well by a set of ordinary differential equations. We use this mathematical model to demonstrate that CBC with non-invasive
position control is able to follow synchronised periodic solutions through stability changes at fold points.

Background

Externally forced, weakly nonlinear systems and, particularly, self-oscillating structures are known to exhibit synchroni-
sation [1]. This type of entrained dynamics generally occur when the driving oscillations quite closely match the intrinsic,
self-sustained oscillations of the system. Non-invasive control techniques have been applied to expand the parameter
region with successful synchronisation [2]. Control-based continuation (CBC) is an an experimental methodology used to
explore the open-loop dynamics of a nonlinear system, where co-existing solutions are present. It can explore both stable
and unstable solutions by tracking continuously through fold bifurcations. CBC has been applied to mechanical structures
on the macro-scale [3, 4, 5]. However, its practicality for structures on the micro-scale has not yet been investigated.
We consider here an active micro-electromechanical systems (MEMS), which has been demonstrated to feature a Hopf
bifurcation to self-oscillations [6, 7]. We extend this previous work with a feasibility study that demonstrates that CBC is
able to track the associated synchronised response under external excitation, irrespective of its stability.

Method and Model Description

Specifically, we consider a nonlinear, actively operated micro-cantilever with integrated piezo-resistive sensor and thermal
actuator (Fig. 1c). Prior work with an experimental test rig designed to investigate the dynamics of MEMS devices
characterised properties of the dynamics with a focus on the first vibration mode. The dynamics of analogue signal
conditioning of electronic signals, controller mechanism and filters (Fig. 1a,b) are presented in [6].
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Figure 1: The experimental setup described by the MEMS mathematical model (1). a) RedPitaya STEMLab125-14; b)
custom signal conditioning and amplifier circuit; and c) MEMS cantilever (taken with JEOL JSTM-IT300).

In this way, we showed that the dynamics of this active MEMS cantilever are described well by the mathematical model

q̈w + δq̇w + qw = αqθ + κext (1a)

q̇θ + βqθ = γq2u (1b)

q̇u + ωLqu = ωL tanh (aqf + b) (1c)
q̇f + ωHqf = q̇w (1d)

for the mechanical deflection qw, the thermal response qθ, the positive feedback qu, and the filtered signal qf . Here the
parameters α, β, γ and δ describe physical cantilever parameters, and the coefficients ωL and ωH refer to the filter cut-off
frequencies [6]. A piezo-actuator (not shown in Fig. 1) supplies the external excitation κext in (1a). Positive feedback is
captured in (1c), as implemented by the RedPitaya STEMLab125-14 (Fig 1a). The saturation function tanh (·) simulates
the voltage limits, and Joule-heating physics in q2u provides mechanical and thermal coupling.
The framework of CBC has been studied quite extensively in other works [4, 8, 5, 9]. The basic idea is that a zero-finding
problem can be formulated by requiring that the controlled system mimics that of the open-loop behaviour. In this study,
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we superimpose the control signal to the forcing signal by representing the reference trajectory r and response qf as
truncated Fourier series [5, 9]. Through fixed-point iteration, a suitable reference trajectory can be found, eliminating the
need to consider higher-order harmonics. The reference trajectory acts as an arclength-like variable, in which experimental
continuation can be performed. We choose as suitable control law the proportional, position-only controller:

κext = Kp (r − qf ) , (2)

where Kp is a user-defined proportional gain. Whilst other applications of CBC require a proportional-plus derivative
(PD) controller, the proportional-only controller (2) is sufficient for achieving local stabilisation for the MEMS system we
study. The feedback controller only requires the state qf , thereby eliminating computation time on derivative estimation.
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Figure 2: a) Spectrogram of the controller effort for integer frequencies (amplitude log-scale); b) S-shaped curve of
synchronised responses; c) Timeseries response; d) Poincaré section of the unsynchronised and e) synchronised response.

Results and Conclusions

We demonstrate the feasibility of applying CBC to track synchronised solutions for our MEMS device represented by the
dynamics (1). Figure 2a depicts the spectrogram of the controller effort (2), showing that the fixed-point iterations within
the CBC algorithm ensure that the steady-state response becomes harmonic up to an acceptable tolerance. Updating and
recording the reference trajectory during the (pseudo-arclength) continuation steps of CBC results in the S-shaped solution
branch (shown in Fig. 2b), represented here by forcing amplitude κ̂ and response amplitude q̂f of the first harmonic. It
is in good agreement with the open-loop dynamics, as computed with the numerical continuation package MATCONT
[10] directly from (1). Figure 2c shows the timeseries response of both open and closed-loop solutions. The open-loop
response displays quasiperiodic behavior, whereas the CBC algorithm stabilises and tracks the unstable, synchronised
response. A Poincaré section of the open loop (Fig. 2d) and closed loop (Fig. 2e) verifies this.
Following this demonstration in principle of CBC for a MEMS device, the next step is to implement it for the tracking of
synchronised solutions of the actual micro-cantilever in the experiment. A specific challenge here is to achieve detection
and actuation on the very fast time scales of micro-structures. We expect that CBC-enabled further insights into the rich
dynamics of active MEMS cantilevers under various excitation scenarios may contribute to their increased sensitivity and
performance in applications.
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